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In the PIP-II era Booster injection will move to Long Straight 11. Without significant lattice modifications, 

though, the greatly increased beam power will create radiation problems. Even replacing the magnets at 

the end of the straight with shorter designs, the dearth of space remaining to accommodate an 

adequate absorber still results in 1.6 R/hr on the downstream corrector with the latest absorber design1. 

Interest has been expressed, therefore, in eliminating the corrector currently at L11, replacing it with a 

much shorter horizontal & vertical dipole corrector package. 

It is the purpose of the present note to explore whether the quadrupole function of the L11 corrector 

for tune adjustment can be bypassed. 

† 

Consider quadrupole contributions distributed around the base ring lattice, where these quadrupole 

terms are defined in thin-lens approximation by2: 
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Then with x̅,  x̅′ the generalized phase-space co-ordinates: x = x /  , and x' = (x' +x) /  , and 

the unperturbed ring transfer matrix: 
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It can be shown (details will be presented elsewhere3) that the transport of a particle once around the 

ring can be described exactly in terms of the unperturbed lattice functions by: 
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1 Dave Johnson, private communication. 
2 The extension to distributed, rather than point-like, quadrupole sources presents purely a technical 

complication and does not introduce additional physics issues. 
3 elsewhere : not here. 
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With the assumption that the quadrupole errors are 'small’, the product above can be approximated by 

terms linear in the qi by: 
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Consider the case in which there are N quad terms, all of which are equal strength, located at equal 

values of β. The linear terms from above then become: 
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The first 2 terms lead to a linear tune shift: 
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From which, using the small angle approximation sin𝜃 ≈ 𝜃, the tune shift is given by: 

 

The third linear term, which depends on the betatron phase advance ψi  to the qi’s, contributes to the 

perturbed ring transfer matrix as: 
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It is left as an exercise for the interested reader4 to show that this term does not impact the tune. It 

does, however, introduce a beta-wave. Accumulating the bits & pieces of the linear quad terms, the 

perturbed ring-wide transfer matrix has the form: 

 

�̅�  ≈  

(

 
 
 
cosν +

𝑞𝛽

2
∑sin(𝜈0 − 2ψi)

𝑁

𝑖=1

sinν +
𝑞𝛽

2
∑cos(𝜈0 − 2ψi)

𝑁

𝑖=1

−sinν +
𝑞𝛽

2
∑cos(𝜈0 − 2ψi)

𝑁

𝑖=1

cosν −
𝑞𝛽

2
∑sin(𝜈0 − 2ψi)

𝑁

𝑖=1 )

 
 
 

 

 

From which it is concluded that a β-wave is produced, the magnitude of which is dependent on the 

betatron phases of the perturbing quads, i.e; 

 

The simplest approach for eliminating this linear β-wave contribution is to choose sets of quadrupoles 

such that5: 
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In the Booster design lattice each cell has a phase advance of 100.5o for a machine tune of 6.700. This is 

close enough to the 2/3 resonance that it’s reasonable to assume the cells are well approximated by 

phase advance ≈ 100.00. With this simplification there are a variety of quadrupole sets that satisfy the 

requirements that the sine & cosine summations are separately equal to zero. The configuration 

considered here is based on a set of 10 quads, spaced by 1 cell. One such set are the quads QL01 

→QL10. This scheme is extended to include the set QL13 →QL22, thereby doubling the number of quads 

to 20 to more evenly distribute their effect.  

The 20 quad sub-set for tune adjustment is, therefore, obtained by throwing away all the quad 

contributions from the 4 trims QL11, QL12, QL23, & QL24. 

† 

A 1st look at vertical tune adjustment using all 24 trim qv's vs the proposed scheme with 20 qv's is 
considered below. In MAD-X, with the 4 quads mentioned zeroed out, the remaining quads had the 
horizontal & vertical k1 values augmented by khtune & kvtune. As such, khtune & kvtune are in units of 

 
4 Assuming, optimistically, that such an entity exists. 
5 Note, however, this does not preclude generation of a dispersion wave: η waves propagate linearly with 

phase advance, unlike β errors that advance as twice the phase. 
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m^-2. The machine was then re-tuned from nominal values to (rather arbitrarily) Q1=6.7598, 
Q2=6.6000. 
 
A comparison of relevant lattice parameters between the nominal tune values, and those after vertical 
re-tuning with the 24 & 20 vertical quad sets appear in Table 1 for a sampling of energies across the 
acceleration cycle. This is not intended to be exhaustive – particularly as simulations were only 
performed for the one set of tunes mentioned – it only represents a casual cruise through parameter 
space. 
 
Staring at the table entries reveals that at lower energies the 20 quad sub-set solution is slightly better 
than both the nominal lattice & the 24 quad results as measured by maxima in βx, βy, and ηx. As energy 
increases somewhere beyond the neighborhood of ≈ 1→ 2 GeV the 24 quad results become very 
marginally better than the 20 quad set. The origin of this curious trend is not currently understood, but 
in practical terms these small differences are effectively irrelevant. The difference in RMS η values is 
measured in millimeters and, since the beam is shrinking adiabatically, small variations in β become 
increasingly unimportant with acceleration. For example, in timeslot = 31 a 16π emittance vertical beam 
has a maximum σy = 2.6 mm and the difference between the 24 & 20 quad solutions is only 16 µm. 
 
Lattice functions for the 24 & 20 quad solutions for vertical tune adjustment at the extremes of the 
range considered – timeSlots 3 & 31 -- are compared in Figures 1 & 2. 
 

 † 

This exercise was repeated to adjust the horizontal tune while keeping the vertical constant. In this case 

the machine was re-tuned to drop the horizontal tune close to the half-integer resonance, with test case 

values of Q1=6.5500, Q2=6.4875. 

A comparison of relevant lattice parameters between the nominal tune values, and those after 

horizontal re-tuning with the 24 & 20 vertical quad sets appear in Table 2. Essentially the same 

observations about these results apply as those discussed for vertical tune adjustment, i.e; the very 

small differences between βx, βy, and ηx values in the 24 & 20 quad sets are inconsequential for all 

practical purposes. 

Lattice functions for the 24 & 20 quad solutions for horizontal tune adjustment at the extremes of the 
range considered – timeSlots 3 & 31 -- are compared in Figures 3 & 4. 
 

† 

Based on the results of the current study it is concluded that the vertical quad function at QL11 for tune 
adjustment can be eliminated with impunity by removing all vertical quad contributions from Q11, Q12, 
Q23, & Q24. 
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VERTICAL TUNE ADJUSTMENT WITH 20 VS 24 VERTICAL QUAD SETS 
 
 
 

timeSlot KE 
(GeV) 

 βX(max) 

(m) 
βY(max) 

(m) 
ηX(max) 

(m) 
ηX(rms) 

(m) 
kH 

(m-2) 
kV 

(m-2) 

3 0.41527 Nominal 39.5107 24.9529 3.7386 2.4416 0 0 

  24 QV 39.7615 27.4937 3.7607 2.4169 -0.06081 0.27949 

  20 QV 39.4081 27.2967 3.5577 2.4139 -0.06120 0.33496 

7 0.76183 Nominal 37.5661 23.1101 3.4355 2.4168 0 0 

  24 QV 37.3932 25.1640 3.4760 2.4161 -0.07631 0.23884 

  20 QV 37.1013 25.0635 3.3559 2.4159 -0.07643 0.27745 

9 1.08191 Nominal 36.5697 22.5885 3.3440 2.4217 0 0 

  24 QV 36.6628 24.0846 3.3856 2.4153 -0.07705 0.26152 

  20 QV 36.3480 24.1680 3.3283 2.4158 -0.07716 0.30386 

11 1.47975 Nominal 36.0193 22.1568 3.2919 2.4220 0 0 

  24 QV 36.1288 23.3747 3.3260 2.4145 -0.07654 0.26408 

  20 QV 35.8092 23.5494 3.3132 2.4153 -0.07662 0.30731 

15 2.45358 Nominal 35.3117 21.5938 3.2684 2.4274 0 0 

  24 QV  35.4776 22.4818 3.2593 2.4137 -0.06697 0.25705 

  20 QV 35.1434 22.8826 3.3002 2.4148 -0.06703 0.29838 

19 3.57600 Nominal 34.9372 21.3007 3.2476 2.4288 0 0 

  24 QV 35.0683 21.9858 3.2264 2.4131 -0.06182 0.24858 

  20 QV 34.7790 22.3646 3.2891 2.4142 -0.06187 0.28791 

23 5.31907 Nominal 35.2626 21.2666 3.2125 2.3991 0 0 

  24 QV 34.7938 21.6472 3.2075 2.4150 -0.10850 0.27768 

  20 QV 34.8223 22.0661 3.2836 2.4162 -0.10855 0.31659 

27 6.36265 Nominal 34.9131 21.1351 3.2080 2.4102 0 0 

  24 QV 34.7243 21.6386 3.2000 2.4136 -0.09113 0.27006 

  20 QV 34.9287 21.9693 3.2811 2.4149 -0.09119 0.30982 

31 7.20116 Nominal 34.7095 21.0408 3.2119 2.4225 0 0 

  24 QV 34.6842 21.6416 3.1965 2.4135 -0.07505 0.26551 

  20 QV 35.0030 21.9170 3.2807 2.4148 -0.07511 0.30587 

 

Table 1. Lattice parameters for nominal tune quad settings & after re-tuning to Q1=6.7598, Q2=6.6000 

using all 24 vertical trim quads and the 20 quad sub-set that excludes QL11, QL12, QL23, & QL24. 
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Figure 1. Lattice functions for 24 (top) & 20 (bottom) vertical quad sets at timeslot = 3, and tunes 

Q1=6.7598, Q2=6.6000. 
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Figure 2. Lattice functions for 24 (top) & 20 (bottom) vertical quad sets at timeslot = 31, and tunes 

Q1=6.7598, Q2=6.6000. 
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HORIZONTAL TUNE ADJUSTMENT WITH 20 VS 24 VERTICAL QUAD SETS 
 

 
 

timeSlot KE 
(GeV) 

 βX(max) 

(m) 
βY(max) 

(m) 
ηX(max) 

(m) 
ηX(rms) 

(m) 
kH 

(m-2) 
kV 

(m-2) 

3 0.41527 Nominal 39.5107 24.9529 3.7386 2.4416 0 0 

  24 QV 47.8718 24.8776 3.9106 2.5607 -0.14245 +0.03656 

  20 QV 48.2070 23.4931 3.8905 2.5597 -0.14255 +0.04178 

7 0.76183 Nominal 37.5661 23.1101 3.4355 2.4168 0 0 

  24 QV 41.0409 23.1949 3.6407 2.5573 -0.15689 +0.00397 

  20 QV 41.5338 22.8602 3.6868 2.5584 -0.15700 -0.00799 

9 1.08191 Nominal 36.5697 22.5885 3.3440 2.4217 0 0 

  24 QV 38.8685 22.6111 3.5417 2.5560 -0.15731 +0.02386 

  20 QV 39.2079 22.2541 3.5723 2.5566 -0.15738 +0.01802 

11 1.47975 Nominal 36.0193 22.1568 3.2919 2.4220 0 0 

  24 QV 37.4603 22.1513 3.4885 2.5559 -0.15737 +0.02489 

  20 QV 37.7323 21.8876 3.5222 2.5563 -0.15742 +0.01963 

15 2.45358 Nominal 35.3117 21.5938 3.2684 2.4274 0 0 

  24 QV  35.9662 21.5232 3.4390 2.5568 -0.14906 +0.01528 

  20 QV 36.2169 21.5880 3.4789 2.5572 -0.14910 +0.00772 

19 3.57600 Nominal 34.9372 21.3007 3.2476 2.4288 0 0 

  24 QV 35.3256 21.1606 3.4116 2.5579 -0.14506 +0.24858 

  20 QV 34.7790 22.3646 3.4597 2.5582 -0.14510 -0.00529 

23 5.31907 Nominal 35.2626 21.2666 3.2125 2.3991 0 0 

  24 QV 34.8237 20.8901 3.3842 2.5572 -0.18998 +0.00374 

  20 QV 35.0012 21.1875 3.4295 2.5574 -0.19001 +0.02783 

27 6.36265 Nominal 34.9131 21.1351 3.2080 2.4102 0 0 

  24 QV 34.6293 20.8197 3.3758 2.5582 -0.17417 +0.02628 

  20 QV 34.7838 21.1088 3.4200 2.5584 -0.17420 +0.01680 

31 7.20116 Nominal 34.7095 21.0408 3.2119 2.4225 0 0 

  24 QV 34.5054 20.7731 3.3697 2.5585 -0.15833 +0.02106 

  20 QV 34.6288 21.0438 3.4116 2.5587 -0.15836 +0.01204 

 

Table 2. Lattice parameters for nominal tune quad settings & after re-tuning to Q1=6.5500, Q2=6.8475 

using all 24 vertical trim quads and the 20 quad sub-set that excludes QL11, QL12, QL23, & QL24. 
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Figure 3. Lattice functions for 24 (top) & 20 (bottom) vertical quad sets at timeslot = 3, and tunes 

Q1=6.5500, Q2=6.8475. 

. 
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Figure 4. Lattice functions for 24 (top) & 20 (bottom) vertical quad sets at timeslot = 31, and tunes 

Q1=6.5500, Q2=6.8475. 

 


